Common fragile sites in colon cancer cell lines: role of mismatch repair, RAD51 and poly(ADP-ribose) polymerase-1.

نویسندگان

  • Patrizia Vernole
  • Alessia Muzi
  • Antonio Volpi
  • Alessandro Terrinoni
  • Annalisa Susanna Dorio
  • Lucio Tentori
  • Girish M Shah
  • Grazia Graziani
چکیده

Common fragile sites (CFS) are specific chromosomal areas prone to form gaps and breaks when cells are exposed to stresses that affect DNA synthesis, such as exposure to aphidicolin (APC), an inhibitor of DNA polymerases. The APC-induced DNA damage is repaired primarily by homologous recombination (HR), and RAD51, one of the key players in HR, participates to CFS stability. Since another DNA repair pathway, the mismatch repair (MMR), is known to control HR, we examined the influence of both the MMR and HR DNA repair pathways on the extent of chromosomal damage and distribution of CFS provoked by APC and/or by RAD51 silencing in MMR-deficient and -proficient colon cancer cell lines (i.e., HCT-15 and HCT-15 transfected with hMSH6, or HCT-116 and HCT-116/3+6, in which a part of a chromosome 3 containing the wild-type hMLH1 allele was inserted). Here, we show that MMR-deficient cells are more sensitive to APC-induced chromosomal damage particularly at the CFS as compared to MMR-proficient cells, indicating an involvement of MMR in the control of CFS stability. The most expressed CFS is FRA16D in 16q23, an area containing the tumour suppressor gene WWOX often mutated in colon cancer. We also show that silencing of RAD51 provokes a higher number of breaks in MMR-proficient cells with respect to their MMR-deficient counterparts, likely as a consequence of the combined inhibitory effects of RAD51 silencing on HR and MMR-mediated suppression of HR. The RAD51 silencing causes a broader distribution of breaks at CFS than that observed with APC. Treatment with APC of RAD51-silenced cells further increases DNA breaks in MMR-proficient cells. The RNAi-mediated silencing of PARP-1 does not cause chromosomal breaks or affect the expression/distribution of CFS induced by APC. Our results indicate that MMR modulates colon cancer sensitivity to chromosomal breaks and CFS induced by APC and RAD51 silencing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination.

Cells with non-functional poly(ADP-ribose) polymerase (PARP-1) show increased levels of sister chromatid exchange, suggesting a hyper recombination phenotype in these cells. To further investigate the involvement of PARP-1 in homologous recombination (HR) we investigated how PARP-1 affects nuclear HR sites (Rad51 foci) and HR repair of an endonuclease-induced DNA double-strand break (DSB). Seve...

متن کامل

Rapamycin sensitizes cancer cells to growth inhibition by the PARP inhibitor olaparib

Poly (ADP-ribose) polymerase inhibitors (PARPi) have been developed and tested in a context of combining it with double-stranded (ds) DNA repair defects or inhibitors, as PARP inhibitor impairs single-stranded (ss) DNA break repair, resulting in the activation of the dsDNA break repair machinery. Rapamycin has been widely prescribed for more than a decade and recent studies have revealed that i...

متن کامل

Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan.

Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination w...

متن کامل

Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil

The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that ...

متن کامل

JF-305, a pancreatic cancer cell line is highly sensitive to the PARP inhibitor olaparib

Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick sensor involved in the base excision repair (BER) pathway. Olaparib, a PARP inhibitor, has demonstrated antitumor activity in homologous recombination (HR)-deficient cancers. To extend this specific therapy to other types of carcinomas, a panel of 11 different cancer cells were screened in the present study. JF-305, a pancreatic cancer cell l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mutation research

دوره 712 1-2  شماره 

صفحات  -

تاریخ انتشار 2011